© Next, all rights reserved n eXt

Accesso a DB tramite prepared statement

Generalita

| prepared statement sono gestiti attraverso I'AgentData della libreria iaf/ia/iadata
| prepared statement riconosciuti dall'’AgentData sono configurati in appositi file .json
Ogni file json puo contenere piu di un prepared statement
L'AgentData viene configurato andando ad indicare due parametri:

o tpevodb: agente di database

o path: path ove risiedono i file di configurazione
e Es:

<agent lib="/usr/lib/libiadata.s0.0.0.0" create="agentData" live="1"
name="prepstat">

<param name="agdb" value="tpevodb"/>

<param name="path" value="/code/cpp/uml/proled/config/iadata"/>
</agent>

Key

* Ogni prepared statement & identificata attraverso la seguente codifica:
o {Main Key}.{Sub Key}
= {Main Key}: identifica il nome del file senza estensione
= {Sub Key}: identifica lo specifico prepared statement all'interno del file
o L'univocita a livello di Main Key & assicurata dal fatto che non possono esistere nella medesima
cartella due file con lo stesso nome
o L'univocita a livello di chiave completa {Main Key}.{Sub Key} deve essere assicurata dal
configuratore, che non deve permettere che per lo stesso Main Key esistano due Sub Key uguali
o Es:
= nel file topology.json ¢ presente un prepared statement codificato con nodi
» |a chiave di tale prepared statement ¢: topology.nodi

JSON

Il file .json permette di configurare piu di un prepared statement
Si possono aggregare, nello stesso file, prepared statement che hanno fini comuni ad esempio
o insieme di tabelle di database associate a certe entita logicamente correlate
o insieme di operazioni comuni (select, update, insert, delete)
o etc...
Il file contiene un array di oggetti, ognuno dei quali ha i seguenti attributi:
o subkey: chiave associata allo specifico prepared statement all'interno del file .json
o sql: query sql che definisce il prepared statement
Es: file operalang.json, abbiamo 3 prepared statement identificati come seque:
o operalang.insert
o operalang.update
o operalang.select

"subkey":"insert"
"sql":"insert into operalang (codice,descrizio) values

https://mynext.it

© Next, all rights reserved n eXt

($[codice],$[descrizio]) returning *"

"subkey" :"update"
"sql":"update operalang set descrizio=$[descrizio] where codice=$[codice]
returning *"

"subkey":"select"
"sql":"select * from operalang where codice=$[codice]"

Parametri e Query

¢ | parametri di un prepared statement sono definiti in forma espressiva (attraverso nomi descrittivi) e
non in forma numerata
Questo modello permette di poter gestire i parametri in modo pil intuitivo e semplificato, dal punto di
vista della programmazione della chiamata
L'AgentData si occupa di convertire la forma espressiva di ogni parametro nella corrispondente forma
numerata (richiesta dal sistema di database)
La sintassi utilizzata per definire un parametro in un prepared statement ¢ la seguente:
o $[.]1 =il nome del parametro & inserito tra parentesi quadre, precedute dal simbolo $
o Es: $[codice]
o il nome del parametro, tra parentesi quadre, non deve essere necessariamente il nome di un
campo di database, ma puo essere un qualsiasi nome riconosciuto dall'utilizzatore.
o Risulta pero conveniente dal punto di vista progettuale e di uniformita nelle conoscenze
dei sistemi, utilizzare i nomi dei campi di database
Di seguito un esempio di query in forma espressiva (da configurare nel sistema) e la corrispondente in
forma numerata:

--Forma espressiva
nodi id=$/idnodo codprg=$/codice progettol;

--Forma numerata
nodi id=$1 codprg=%$2;

e Se un parametro e ripetuto piu volte con lo stesso nome, verra connesso con lo stesso numero
¢ Le query di insert, update, delete devono essere sempre seguite dall'espressione returning *, ad
esempio:

operalang (codice,descrizio $[codice $[descrizio returning

AgentData e funzionalita

¢ L'AgentData si occupa di gestire i prepared statement sql del sistema; fonisce verso gli utilizzatori una
interfaccia semplificata per I'accesso ai prepared statement
¢ ['agente fornisce la possibilita di eseguire piu prepared statement appartenenti al medesimo file, in una
unica chiamata
¢ Le query preconfezionate sono definite in appositi file json. Ogni file json e' un array di oggetti del tipo:
o {"subkey":"xxx", "sql":"select ..."} ove subkey = una sotto-chiave della specifica prepared

https://mynext.it

© Next, all rights reserved n eXt

statement, sql = sql del prepared statement.

Esecuzione dei prepared statement

¢ Al fine di eseguire un prepared statement si effettua una ask come segue:

o request = KEY (chiave del prepared statement che si vuole eseguire, oppure Main Key)

o pl = rec(lista parametri) (es: rec(codice,descrizio)) ove lista parametri contiene la lista dei nomi
dei parametri richiesti nel prepared statement ed i rispettivi valori; il rec puo essere costituito da
pill righe ad esempio nel caso di inserimento o update di piu righe per la stessa tabella; in tal caso
€ necessario attivare esplicitamente la transazione

o nume = 0 valore di default = operazione semplice (per nume > 0 vedi paragrafo Funzioni
integrative)

o retval = risultato della query (nel caso di query insert, update, delete si inserisce in fondo alla
query "returning *", in modo che il sistema ritorni un json contenente il dato aggiornato o il dato
cancellato)

o Es

= file operacom.json

"subkey":"select"
"sql":"select * from operacom where codice=$[codice]"

"subkey":"selectkey"
"sql":"select * from operacom where key=$[key]"

¢ Chiamata
o agente: AgentData
o tipo di chiamata: ask
o request: operacom.selectkey
o pl: {"key":"errormsg"}

]

¢ Risposta

"codice"
"key":"errormsg"
Iltipoll IIMII

¢ Se KEY (request) viene posta ad un valore di {Main Key} (solo parte relativa al nome del file), il
sistema puo restituire il risultato dell'esecuzione di piu di un prepared statement associato a
pil di una {Sub Key} presente nel file

o L'utilizzo diretto della Main Key nella request, permette di semplificare I'assegnazione
dei permessi
= nfatti i permessi utente potrebbero essere associati all'intero file piuttosto che alle singole
prepared statement

https://doc.mynext.it/_detail/tec/iaf/pasted/20231226-111855.png?id=pub%3Aprepstat
https://mynext.it

© Next, all rights reserved n eXt

Esecuzione multi-query implicita

request = {Main Key}
pl = (_subkey, lista parametri) (singolo oggetto json & rec con una sola riga) ove
o _subkey = la lista delle Sub Key a cui siamo interessati, divise da virgola senza spazi (€ possibile,
naturalmente, inserire una unica Sub Key)
= se subkey non viene specificato (vuoto, oppure assente) = I'agente restituisce tutte le
subkey della Main Key
o lista parametri: lista completa di tutti i parametri richiesti da ogni Sub Key
= se due Sub Key hanno un parametro in comune (stesso nome espressivo), questo va
specificato una sola volta nella lista ed il corrispondente valore verra utilizzato da entrambe
retval: rec(lista key) ove
o lista key:
= un attributo per ogni KEY richiesta, con il nome {Main Key}.{Sub Key}
= il valore di ogni attributo € il JSON corrispondente all'esecuzione del prepared statement
Questo modello é particolarmente indicato per estrarre (select), con una unica chiamata, i
dati da piu tabelle in relazione tra loro
e Es:

o file topology.json

"subkey":"nodiprogetto"
"sql":"select codice,id,tipoarm,h,hftmax,css from nodi where
codprg=$[codprg] and id=$[idnodo] order by id"

"subkey":"ramiprogetto"
"sql":"select codice,id,nodosx,nododx,lc,leq from rami where
codprg=$[codprg] and id=$[idramo] order by id"

"subkey":"prgmezzi"
"sql":"select * from prgmezzi where codprg=$[codprg] order by codice"

e Chiamata
o agente: AgentData
o tipo chiamata: ask
o request: topology
o pl: {"_subkey":"ramiprogetto,nodiprogetto”,"codprg”:1748,"idnodo":1,"idramo":1}

=]

¢ Risposta

"topology.ramiprogetto"
"codice"
nign
"nodosx"
“nododx"
nlcn
II'LquI

https://doc.mynext.it/_detail/tec/iaf/pasted/20231226-110837.png?id=pub%3Aprepstat
https://mynext.it

© Next, all rights reserved n eXt

"topology.nodiprogetto"
"codice"
Ilidll
"tipoarm": "A"
Ilhll
"hftmax"
IICSSII

Esecuzione multi-query esplicita

¢ request = {Main Key}
¢ pl = (_subkey, params) (una riga per ogni Sub Key) ove
o _subkey = codice di una specifica Sub Key nel file della Main Key
o _params: oggetto JSon contenente i parametri richiesti dalla specifica Sub Key
= ogni Sub Key ¢ analizzata indipendentemente dalle altre
¢ retval: rec(lista key) ove
o lista key:
= un attributo per ogni KEY richiesta, con il nome {Main Key}.{Sub Key}
= il valore di ogni attributo € il JSON corrispondente all'esecuzione del prepared statement

Esempio

¢ Consideriamo il seguente file operacomins.json

"subkey": "operacom"
"sql": "insert into operacom (codice,key,tipo) values
($[codice],$[key],$[tipo]) returning *"

"subkey": "operamsg"
"sql": "insert into operamsg (codcom,codlang,msg) values
($[codcom],$[codlang],$[msg]) returning *"

"subkey": "operalang"
"sql": "insert into operalang (codice,descrizio) values
($[codice],$[descrizio]) returning *"

¢ Vogliamo inserire un nuovo operacom ed i relativi messaggi in operamsg per i vari linguaggi
operalang, per cui utilizzeremo due subkey:
o operacom: una riga per il nuovo tipo di messaggio
o operamsg: una riga per ogni traduzione prevista nella specifica lingua
¢ Possiamo eseguire
o ask
o request = operacomins
°© hume =2

https://mynext.it

© Next, all rights reserved

next

= transazione: assicuriamo l'integrita dei dati nell'inserimento nelle tabelle operacom e

operamsg

= pre-processing: vogliamo ottenere il numeratore per il campo codice di operacom e poi
associare il codice rilevato alle righe di operamsg come valore di chiave esterna

e {" subkey":"operacom
e {" subkey":"operamsg

, " _params":[{ ... "codice" : "_getnume" ... },...1}

, " params":[{ ... "codcom" : "$[operacom.codice]” ...

}....]1} (operacom di operacom.codice fa riferimento al nome della query e non al

nome della tabella)
o pl ¢ il seguente json

" subkey":"operacom"
" params"
"codice":" getnume"
Iltipoll IIMII
Ilkeyll Ilerrmsgll

" subkey":"operamsg"
" params"

"codcom":"$[operacom.codice]"
"codlang":"it"
"msg":"E' tutto sbagliato"

"codcom":"$[operacom.codice]"
Ilcodlangll Ilenll
"msg":"All is wrong"

"codcom":"$[operacom.codice]"
"codlang":"es"
"msg":"Todo es erato"

Applicazione Funzioni Avanzate

Indipendentemente dal tipo di query (monoquery, multiquery implicete o esplicite) & possibile richiedere al
sistema una combinazione delle seguenti funzionalita:

¢ Transazione
¢ Preprocessing
¢ Merge dei risultati

Per attivare una o tutte le funzioni indicate bisogna utilizzare il nume secondo la tabella seguente:

Nume|Bit Descrizione Transazione|Preprocessing|Merge dei risultati
0 |000 Nessuna Funzione
1 001 Transazione X

https://mynext.it

© Next, all rights reserved n eXt

Nume|Bit Descrizione Transazione|Preprocessing|Merge dei risultati
2 010 Preprocessing X
3 |011 Transazione + Preprocessing X X
4 |100 Merge X
5 |101 Transazione + Merge X X
6 |110 Preprocessing + Merge X X
7 |111|Transazione + Preprocessing + Merge X X X

Come si osserva dalla tabella le transazioni sono attivate con nume=1, il preprocessing con nume = 2, il merge
con nume = 4; gli altri valori del nume combinano le tre funzioni in modo opportuno (vedi tabella delle funzioni
avanzate sopra).

Transazioni

¢ Questo modello & particolarmente indicato nel caso di applicazione di modifiche ai dati
attraverso operazioni di insert, update, delete attuate su piu tabelle in relazione tra loro
o | dati vengono preparati inserendo, per ogni Sub Key, i valori rilevati, nei rispettivi parametri attesi
dal prepared statement

o Si costruisce un JSon per ogni Sub Key, contenente i parametri

o Per assicurare l'integrita dei dati
= ¢ possibile eseguire le operazioni all'interno di una transazione
= a tale scopo = nume = 1 esegue i prepared statement all'interno di una transazione
= se anche una sola query non va a buon fine, il sistema esegue una rollback della transazione

altrimenti esegue commit

Pre-Processing dei parametri

¢ Impostando nume = 2 si richiede all'agente di eseqguire la transazione con preprocessing dei parametri
¢ L'agente interpreta il contenuto di ogni parametro e ricerca i seqguenti valori:
o _getnume = se un parametro ha il valore _getnume, |'utilizzatore intende sostituire il valore del
parametro con un numertore richiesto al tpe_db
= il numeratore richiesto sara: getnume({MainKey}.{SubKey}, nomeparametro)
» |'agente chiedera tanti numeratori quante sono le righe della tabella dei parametri e
assegnera ad ogni riga il rispettivo valore
= _getnume(tabnume,fldnume) = si desidera estrarre il numeratore esattamente dalla
tabnume, fldnume indicati tra parentesi (es: _getnume(rilievo,codice))
o _uuidv4 = se un parametro ha il valore _uuid (v4), I'utilizzatore intende sostituire il valore del
parametro con una chiave uuid v4 generata dal sistema
= |a uuid viene generata con la classe iaf stringutil::generate_uuid_v4()
= viene generata una uuid per l'attributo relativo, per ogni riga del rec dei parametri
= |a uuid generata ha una dimensione fissa di 37 caratteri
o _uuidv7 = se un parametro ha il valore _uuidv7, I'utilizzatore intende sostituire il valore del
parametro con una chiave uuid v7 generata dal sistema (la chiave v7 rispetto a v4 permette un
ordinamento cronologico in base al codice)
= |a uuid viene generata con la classe iaf stringutil::generate_uuid_v7()
= viene generata una uuid per l'attributo relativo, per ogni riga del rec dei parametri
= |3 uuid generata ha una dimensione fissa di 37 caratteri
o _uuidshort = se un parametro ha il valore _uuidshort, si intende sostituire il parametro con una
chiave uuid corta
o _uuidveryshort = se un parametro ha il valore _uuidveryshort, si intende sostituire il parametro
con una chiave molto corta della lunghezza di 10 caratteri
o $[X.Y] = sostituisce il valore del parametro relativo, con il valore del parametro riferito dalla
coppia

https://mynext.it

© Next, all rights reserved n eXt

= X=Sub Key della Main Key in elaborazione
= Y=nome parametro della Sub Key
¢ es: nodi.codice: X=nodi, Y=codice = sostituisce il valore del paramtro a cui & stato

assegnato nodi.codice, con il valore del parametro codice specificato per la Sub Key
nodi

= Utile nei casi in cui si assegni una chiave esterna a RUN-TIME tramite la _getnume

o _datanow, oranow, timenow, |'agente imposta rispettivamente

= |a data corrente (YYYYMMDD)

= |'ora corrente (HH:MI:SE)

= il time epoch corrente (secondi da 1 Gennaio 1970)

Merge dei risultati

Funzionalita applicata dall'agente solo in caso di multiquery e non in caso di monoquery

Esegue il merge di tutti i dataset di una multiquery in un unico dataset dove vengono accodati nella
sequenza di esecuzione i dataset ottenuti

Il retval prende in questo caso una struttura tabella che rappresenta il merge di tutti i risultati
Particolarmente utile per fare il merge di dati provenienti da pill database in una unica struttura tabellare

Altre funzioni di AgentData

Lista parametri

e Tramite ask & possibile richiedere la lista dei parametri di una {Main Key}.{Sub Key}:
o request = keyparams
o pl = rec(key, subkey), possiamo avere i seguenti casi
1. key = chiave completa {Main Key}.{Sub Key} = il campo _subkey ¢ trascurato
2. key = Main Key e subkey = vuoto = restituisce i parametri di tutti i _subkey della Main Key
3. key = Main Key e subkey = lista di subkey divisi da virgola = restituisce i parametri dei
subkey specificati
o nume = numero di righe nei parametri
o retv = rec(parametri), peri tre casi
1. unjson con una colonna per ogni parametro il cui nome €' proprio il nome del parametro, il
valore e' vuoto
2. un json con una colonna per ogni subkey della Main Key identificata con {Main Key}.{Sub
Key} contenente il json dei parametri della specifica key
3. unjson con una colonna per ogni subkey della Main Key indicata in _subkey, identificata con
{Main Key}.{Sub Key} contenente il json dei parametri della specifica key
o request = keyparamsmqi (keyparams per multiquery implicite)
o pl = rec(key, subkey) come keyparams
o retv = rec(parametri) restituisce in una unica riga tutti i parametri del sottoinsieme di key richieste
senza replicazioni; questo parametro puod essere utilizzato per le multi-query implicite

Reload del repository

¢ Tramite tell & possibile fare ricaricare dal repository di file json tutte le configurazioni, nel caso in cui
vengano modificati:
o request = reload
o pl = rec(ciao=ciao)
o retv = true se I'operazione ha successo, false altrimenti

https://mynext.it

© Next, all rights reserved n eXt

Costruzione automatica file JSon Insert / Update

Attraverso una chiamata tell all'agente sara possibile creare automaticamente i prepared statement di:
¢ insert, update, delete

di apposite liste di tabelle. Di seguito vediamo i 3 casi.

Insert

¢ E' possibile costruire file json contenenti operazioni di insert per gruppi tabelle correlate, attraverso
I'utilizzo delle seguenti chiamate tell (i file sono creati nel path definito in configurazione dell'agente):
o request = tabinsert
o pl = rec(key,tabs) ove
= key = Main Key (nome del file senza estensione da creare)
= tabs = lista delle tabelle interessate separate da virgola senza spazi
o nume = 1 = i nuovi dati vengono inseriti in append nel file (se esiste), altrimenti il file viene
sovrascritto
o retv = true se il file e' stato creato nel path di destinazione definito

Update

¢ E' possibile costruire file json contenenti operazioni di update per gruppi tabelle correlate, attraverso
I'utilizzo delle seguenti chiamate tell (i file sono creati nel path definito in configurazione dell'agente):
o request = tabupdate
o pl = rec(key,tabs) ove
= key = Main Key (nome del file senza estensione da creare)
= tabs = lista delle tabelle interessate separate da virgola senza spazi
o nume = 1 = i nuovi dati vengono inseriti in append nel file (se esiste), altrimenti il file viene
sovrascritto
o retv = true se il file e' stato creato nel path di destinazione definito
o La condizione di update (where codice=...) viene applicata come segue:
= se esiste un campo codice, viene utilizzato nella codizione di update come segue
e nome espressivo: _codice (codice preceduto da underscore)
¢ condizione aggiunta: where codice = $[_codice]
= se non esiste un campo codice, I'agente ricerca tutti i campi che iniziano con cod e applica
tutte le condizioni
e nome espressivo: _codXXX (codice di chiave esterna preceduto da underscore)
¢ condizione aggiunta: where codXXX = $[_codXXX] and codYYY = $[_codYYY]
and ...

Delete

¢ E' possibile costruire file json contenenti operazioni di delete per gruppi tabelle correlate, attraverso
I'utilizzo delle seguenti chiamate tell (i file sono creati nel path definito in configurazione dell'agente):
o request = tabdelete
o pl = rec(key,tabs) ove
= key = Main Key (nome del file senza estensione da creare)
= tabs = lista delle tabelle interessate separate da virgola senza spazi
o nume = 1 = i nuovi dati vengono inseriti in append nel file (se esiste), altrimenti il file viene
sovrascritto
o retv = true se il file e' stato creato nel path di destinazione definito

https://mynext.it

© Next, all rights reserved n eXt

o La condizione di delete (where codice=...) viene applicata come segue:

= se esiste un campo codice, viene utilizzato nella codizione di update come segue
e nome espressivo: _codice (codice preceduto da underscore)
¢ condizione aggiunta: where codice = $[_codice]

= se non esiste un campo codice, I'agente ricerca tutti i campi che iniziano con cod e applica

tutte le condizioni
e nome espressivo: _codXXX (codice di chiave esterna preceduto da underscore)
¢ condizione aggiunta: where codXXX = $[_codXXX] and codYYY = $[_codYYY]
and ...

Tutte le operazioni

¢ E' possibile creare un file json con tutte le operazioni (insert, update, delete) richiamando la seguente
o request = taballop
o pl = rec(key,tabs) ove
= key = Main Key (nome del file senza estensione da creare)
= tabs = lista delle tabelle interessate separate da virgola senza spazi
o nume = 1 =i nuovi dati vengono inseriti in append nel file (se esiste), altrimenti il file viene
sovrascritto
o retv = true se il file e' stato creato nel path di destinazione definito

Esempio Insert (stesso per update)

e Chiamata
o agente: AgentData
o tipo chiamata: tell
o request: tabinsert
o pl: {"key":"nodimng","tabs":"nodi,nodisup,nodiatt"}

=]

Utilizzo di piu database

¢ | file Json degli esempi precedenti non forniscono alcuna indicazione sull'agente di database da utilizzare
o In questi casi I'agentdb utilizzato & quello specificato nell'’AgentData
o Tutti i prepared statement verranno quindi eseguiti attraverso tale agentdb
¢ E' possibile associare ciascuna prepared statement ad un differente agentdb
o A tal fine si puo aggiungere, opzionalmente, I'attributo "db" nel relativo oggetto prepared
statement
o L'AgentData utilizzera I'agentdb di default (quello assegnato all'agente) per i prepared statement
che non forniscono indicazione esplicita dell'attributo db
= mentre per i prepared statement che forniscono I'attributo db I'AgentData eseguira il
prepared statement utilizzando I'agentdb indicato dall'attributo stesso
o Questa possibilita & utile per:
= recuperare dati da differenti database
= inserire dati in differenti database
= replicare dati da un database ad un'altro

Esempio Json per piu database

¢ Ipotizziamo di:

https://doc.mynext.it/_detail/tec/iaf/pasted/20231226-121157.png?id=pub%3Aprepstat
https://mynext.it

© Next, all rights reserved

next

o dover inserire un nuovo utente in un sistema informativo
o che il sistema informativo sia composto dai seguenti database:
= userdb: database di gestione della protezione (nome dell'agentdb: userdb)
= oeedb: database di gestione dell'oee (nome dell'agentdb: tpevooee)
= mldb: database di gestione del machine ledger (nome dell'agentdb: tpevoml)
o l'inserimento dell'utente deve avvenire su tutti i database indicati
¢ Vediamo di seguito un esempio di file JSON opins.json:

"db":"userdb"
"subkey" :"operato"
"sql":"insert into operato (codice,pwd,nominati,email) values
($[codice],$[pwd],$[nominati], $[email]) returning *"

"db":"tpevooee"

"subkey":"operato oee"

"sql":"insert into operato (codice,nominati,email) values
($[codice],$[nominati],$[email]) returning *"

"db":"tpevoml"

"subkey":"operato ml"

"sql":"insert into operato (codice,nominati,email) values
($[codice],$[nominati], $[email]) returning *"

e Attraverso una unica richiesta di esecuzione di multi-query implicita € possibile inserire I'utente in tutte e

tre i database
o si assegnano gli attributi codice, pwd, nominati, email dell'utente
o si esegue la ask con request = operains
o si pone nume = 1 per attivare le transazioni

= |'AgentData avviera una transazione per ogni database, in modo da garantire che tutte le
query vadano a buon fine, altrimenti annullera la transazione su tutti i db assicurando cosi

l'integrita dei dati
¢ Esempio Chiamata
agente: AgentData
tipo chiamata: ask
request: opins
pl: {"codice":"n.berga”,"pwd":"aioaio","nominati":"Nicola
Bergantino","email":"n.bergantino@youhh.com"}
nume: 1

[¢]

[¢]

[¢]

o

[¢]

]

Parameters Augmentation

L'AgentData implementa un algoritmo che permette di completare i parametri di una prepared statement, non

forniti dal richiedente:

e utilizzando valori default specificati in configurazione
¢ andando a prelevare i dati dal database attraverso una prepared statement

https://doc.mynext.it/_detail/tec/iaf/pasted/20240106-180905.png?id=pub%3Aprepstat
https://mynext.it

© Next, all rights reserved n eXt

¢ impostando i dati a NULL

Di sequito la specifica dell'algoritmo:

¢ Data una prepared S sia:
o P I'insieme dei parametri richiesti da S
o Q l'insieme dei parametri forniti dal richiedente
o sia M =P - Q l'insieme dei parametri presenti in P ma non forniti in Q
o se M = 0 significa che tutti i parametri P richiesti da S sono stati forniti in Q
¢ Se Q ha una sola riga e M > 0, I'AgentData applica un algoritmo di parameters augmentation
o tale algoritmo cerca di assegnare automaticamente i parametri in M, come segue:
= applicazione dei parametri di default definiti nella subkey
= impostazione dei parametri a partire dal risultato derivante dall'esecuzione di altre prepared
statement (key)
= impostazione dei parametri a valori NULL

o Siano S(1), S(2), ..., S(n) le prepared statement da cui prelevare i parametri

o Siano R(1), R(2), ..., R(n) i risultati dell'esecuzione delle n prepared statement

o M=M-R(1)-R(2) - ... - R(n) & l'insieme dei parametri rimasti inassegnati dopo l'applicazione di
R(1), ..., R(n)

[¢]

Se M > 0 ed e richiesto il setting a NULL
= |'algoritmo assegna tutti i parametri in M al valore NULL
e Per poter applicare l'algoritmo di parameters augmentation & necessario utilizzare due attributi
dell'oggetto json corrispondente alla prepared statement:
o paramsdef: & un oggetto JSON con un attributo per ogni parametro con il relativo valore di default
o paramsql: specifica la lista delle key da eseguire per recuperare i parametri (lista di elementi
divisi da virgola senza spazi)
o paramsnull: se posto a 1 indica che si richiede il settaggio a NULL dei parametri residui (dopo
I'applicazione di P e di R(1), ..., R(n))
e Esempio
o vogliamo inserire una nuova linea di produzione
o creiamo una mainkey = linea e il corrispondente file linea.json
o per completare l'inserimento di una linea dobbiamo inserire:
= ubicaz: tutti i dati richiesti, con setting automatico a NULL di quelli non fornit
= |ottim: solo il campo codice, non richiesto I'algoritmo di parameters augmentation
= oeeconf (ORA): oeeconf orario, si preleva la configurazione da valori default
= oeeconf (DAY): oeeconf giornaliero, si preleva la configurazione da oeeconf.codice="day"
o di seguito linea.json

"subkey":".","sql":".", "paramsnull":0,"paramsql":".",K6 "paramsdef" "events"

"subkey":"ubicaz"

"sql":"insert into ubicaz
(codice,descrizio,identif,tiposet, tipocom, tipodepo,codriso,impianto,utente,datareg,
stato, codcate, codoper, locked, codqua, nqua, codubib, capacita,occupazione,pos,liml, lim2
,curop,codturno,agpausesap,plmaster,plslave,updw, kbterm,blink,visnum, codfase, codazi
,schema, costo,defincdec, oeew,opts, thmonoee, thmonsetup, thmondownt, thmonscrap, thdayoe
e, thdaysetup, thdaydownt, thdayscrap, laps, linubi,defnpop,deftcpol, saveoeeshift, tmstar
t,started,mancost,amcilr,amsop, storcompo, supname, locname, extcost, tmstartto,ystart,y
startto, codtunext, tmtunext, tmtu) values
($[codice],$[descrizio], $[identif],'P',$[tipocom],$[tipodepo],$[codriso],$[impianto
],$[utente],$[datareg],$[stato],$[codcate], $[codoper],$[locked],$[codqual,$[nqual,$
[codubib], $[capacita],$[occupazione],$[pos],$[liml],$[lim2],$[curop]l,$[codturno], $I
agpausesap],$[iplmaster],$[plslave], $[updw],$[kbterm],$[blink],$[visnum], $[codfase],
$[codazi],$[schema],$[costo],$[defincdec], $[oeew],$[opts],$[thmonoee], $[thmonsetup]
,$[thmondownt],$[thmonscrap],$[thdayoee], $[thdaysetup],$[thdaydownt], $[thdayscrap],

https://mynext.it

© Next, all rights reserved n eXt

$[laps],$[linubi],$[defnpop]l,$[deftcpol],$[saveceeshift],$[tmstart],$[started],$[ma

ncost],$[amcilr],$[amsop],$[storcompo], $[supname],$[locname], $[extcost],$[tmstartto

1,$[ystart], $[ystartto],$[codtunext],$[tmtunext], $[tmtu]) returning *",
"paramsnull”:1

b
{
"subkey":"lottim",
"sql":"insert into lottim (codice) values ($[codice]) returning *",
b
{

"subkey":"oeeconf hourly",

"sql":"insert into oeeconf
(codice,codriso, codperiodo,durperiodo,nrperiodi,tmdisp,tpriso,tmlast, codmm,codrisod
ef,bgnper,availab, calcnop, kweek, liml,1im2,mudoee,dircalcsca,disabled,nptots) values
($[codice] ||
$[codperiodo],$[codice],$[codperiodo],$[durperiodo],$[nrperiodi],$[tmdisp],$[tpriso
1,$[tmlast],$[codmm],$[codrisodef],$[bgnper],$[availab]l,$[calcnop], $[kweek],$[1liml]
,$[1im2],$[mudoee],$[dircalcscal,$[disabled],$[nptots]) returning *",

"paramsdef": {
"codice":"ora", "codperiodo":"ORA", "durperiodo" :3600,"nrperiodi":24,"tmdisp":3600,"t

priso":"M",
"tmlast":" timenow", "codmm":0,"codrisodef":"" K "bgnper":0,"availab":1,"calcnop":1,"k
week":"",
"liml":0,"1im2":0, "mudoee":"","dircalcsca":1,"disabled":1, "nptots":0
}
b,
{

"subkey":"oeeconf daily",

"sql":"insert into oeeconf
(codice,codriso, codperiodo,durperiodo,nrperiodi, tmdisp,tpriso,tmlast, codmm,codrisod
ef,bgnper,availab, calcnop, kweek, liml, lim2,mudoee,dircalcsca,disabled,nptots) values
($[codice] ||
$[codperiodo],$[codice],$[codperiodo],$[durperiodo],$[nrperiodi],$[tmdisp],$[tpriso
1,$[tmlast],$[codmm],$[codrisodef],$[bgnper],$[availab]l,$[calcnop], $[kweek],$[1liml]
,$[1im2],$[mudoee],$[dircalcscal,$[disabled],$[nptots]) returning *",

"paramsqgl":"ubicazdef.oeeconfd"

}

¢ |e key ubicazdef.oeeconth e ubicazdef.oeeconfd sono presenti nel file ubicazdef.json, come segue

{

"subkey":"oeeconfh",

"sql":"select * from oeeconf where codice='ora'"
H
{

"subkey": "oeeconfd",

"sql":"select * from oeeconf where codice='day'"
}

¢ L'inserimento di una linea di produzione pud essere svolta attraverso la seguente chiamata
o Chiamata
= agente: AgentData
= request: linea

https://mynext.it

© Next, all rights reserved n eXt

= pl: {"codice":"testl","descrizio":"testl","tiposet":"P"}
= nume: 2

(]

IMPORTANTE : i parametri aggiunti con parameters augmentation possono essere soggetti a pre-processing
dei parametri; ad esempio in un parametro default potrei impostare il valore di preprocessing _getnume

Events

¢ E' possibile associare ad ogni prepared statement un evento da inviare ad un agente qualora la prepared
statement fosse stata eseguita con successo (es: un inserimento, una modifica, ...).

E' possibile configurare uno (singolo oggetto) o piu agenti (array json) destinatari dell'evento.

A sequito dell'esecuzione con successo del prepared statement I'AgentData verifica se vi € associato un
evento, in tal caso richiama la tell di ogni agente configurato, con la rispettiva request.

o La tell eseguita fornira nell'attributo "p1" della richiesta I'oggetto JSON (myrec) risultante
dall'esecuzione del prepared statement (es: nel caso di isnert, delete, update sara il valore di
"returning *", mentre nel caso di select, sara il risultato della select).

Per configurare gli eventi e sufficiente integrare nel JSON del prepared statement il seguente attributo:
o events = oggetto json o array json, cosi composto:
= to = nome dell'agente destinatario.
= request = request.
= param = |'attributo param definisce il valore di tipo stringa che viene inserito nel "p2" della
richiesta all'agente destinatario. Se non specificato il "p2" viene impostato a NULL,
altrimenti viene impostato al valore specificato.
Esempio di configurazione evento:

"subkey":"operacom"
"sql":"insert into operacom (codice,key,tipo) values
($[codice],$[key],$[tipo]) returning *"
"paramsdef":{"codice":" getnume"
"events":{"to":"mngevent", "request":"newopera", "param":""

"subkey" :"operamsg"

"sql":"insert into operamsg (codcom,codlang,msg) values
($[codcom],$[codlang],$[msg]) returning *"

"paramsdef":{"codcom":"$[operacom.codice]"

¢ Se nell'attributo to dell'oggetto events, si inserisce la seguente istruzione $me I'agente inviera la
chiamata a se stesso (esempio per attivare certe operazioni su DB a seguito di certe query)

Riga dummy

¢ Nel caso in cui, per il primo oggetto del file JSON, non si specifichino gli attributi opzionali (db, paramsql,
paramsnull) e se questi attributi fossero poi forniti gli oggetti successivi nell'array, allora & necessario
indrodurre una riga dummy

¢ La riga dummy permette all'algoritmo di conversione da JSON a myrecson della IAF di intercettare tutti
gli attributi degli oggetti presenti

https://doc.mynext.it/_detail/tec/iaf/pasted/20240109-140250.png?id=pub%3Aprepstat
https://mynext.it

© Next, all rights reserved n eXt

¢ La riga dummy va inserita come prima riga del json, di seguito un esempio:

"subkey":".","sql":".", "paramsnull":0,"paramsql":".",K6 "paramsdef" "events"

Generazione di csv da Prepared Statement

Utilizzando la tell & possibile eseguire qualsiasi prepared statement come con la ask
In questo caso I'agente ritorna True se la chiamata multi-mono query restituisce un JSON altrimenti
ritorna False
E' possible generare file CSV a partire da una prepared statement, basta aggiungere nel JSON della
richiesta i sequenti attributi:

o csvfile: path completo del file csv

o _decimalpoint: (opzionale) si puo' indicare il carattere separatore dei decimali

o _separator: (opzionale) si puo indicare il carattere separatore dei campi nel file csv (default: ;)
Se presente l'attributo _csvfile, I'agente crea il file csv

Attributi utili di una subkey

Rinominare nomi di campi

Con I'attributo renamemap del file JSON & possibile rinominare nomi dei campi della risposta di un prepared
statement in modo arbitrario, ad esempio per stampare un CSV con nomi di campi significativi.

Vediamo il seguente esempio:

"subkey":"stab03"

"db":"terranuovadb"

"sql":"with d as (select d.* from dimension d inner join oeeconf o on
0.codriso=d.dl where tm>$[tmbgn] and tm<$[tmend] and d2='ORA' and o.disabled='0"
and o.codperiodo='0RA'),e as (select u.descrizio as linea, round(sum(m rep nptc-
m rep stc)/60) as lavorato,round(sum(m rep d)/60) as previsto from d inner join
fact f on f.codice=d.kfact inner join ubicaz u on u.codice=d.dl group by
u.descrizio) select 'Terranuova' as dplant,*,round((case when previsto>0 then
lavorato/previsto else 0 end)::numeric, 2) as e from e order by linea"

"renamemap”:{"dplant":"Stabilimento", "linea":"Centro di
lavoro", "lavorato":"Tempo Lavorato (min)", "previsto":"Tempo Previsto (min)"
"e":"Efficienza (%)"

In questo caso renamemap rinomina i campi dbplant, linea, lavorato, previsto, e assegnando nomi esplicativi.
Normalizzare query lunghe

Per poter normalizzare query lunghe in cui si adoperano ritorni a capo e spazi per poterle leggere meglio nel file

https://mynext.it

© Next, all rights reserved n eXt

JSON si puo attivare I'attributo normalize.
L'attributo normalize se posto a 1 attiva un algoritmo di normalizzazione della stringa SQL.

Questa operazione € particolarmente utile per la visualizzazione dei LOG delle stringhe lunghe.

"subkey":"ubigiac"
"sql":"SELECT
g.codubi,
1.codart,
ca.tipopal as codpal,
ug.xabs as x,
ug.yabs as vy,
ug.zabs as z,
CASE WHEN tp.stackable = 1 then 2 else 1 END as npallet,
u.tipocom,
u.tiposet,
0.0 as a,
0.0 as b
FROM
giacese g JOIN lottim 1 on 1l.codice=g.codlot
JOIN catego ca ON l.codart = ca.codice
JOIN ubicaz u on u.codice=g.codubi
JOIN tipopal tp on tp.codice = 1.umext
LEFT JOIN ubigeo ug on ug.codubi = g.codubi
WHERE
g.codubi=$[codubi]
GROUP BY
g.codubi,
l.codart,
u.tipocom,
u.tiposet,
ca.tipopal,
ug.xabs,
ug.yabs,
ug.zabs,
tp.stackable
ORDER BY
max(g.codice)"
"paramsdef":{"codubi":"LGV"
"normalize":1

La normalize riduce tutti gli spazi doppi o i ritorni a capo o i segni di tabulazione ad un unico spazio, in modo da
avere la query su una unica riga.

IMPORTANTE: Utilizzare con attenzione nel caso in cui gli spazi servano per impostare valori o condizioni.

Q&A

e E' possibile attivare la procedura di parameters augmentation per settare automaticamente attributi
default indicati espressamente per valore oppure che utilizzano i valori default del campo nel db ? (tipo il

https://mynext.it

© Next, all rights reserved n eXt

null)
o Sl basta utilizzare I'attributo paramsdef dell'oggetto subkey specifico (vedi Parameters
Augmentation)
¢ Come va gestito nel prepared statement le query con condizione where che richiede che un parametro
sia parte di un certo insieme di parametri ? (esempio: where codice in (‘A', 'B', ...) and ...)
o di seguito la risposta:

"subkey":"ubiany"
"sql":"select * from ubicaz WHERE codice = ANY(string to array($[lista
codici], ',"))"

¢ Come gestire un prepared statement con una like ?
o di sequito la risposta:

"subkey" :"ubilike"
"sql":"select * from ubicaz WHERE codice like $[codice] || 'S"'"

¢ Nel caso in cui una richiesta multi-query non sia vincolata da una transazione e possibile eseguire le
query in parallelo ?

o Nella versione attuale le query parallele sono possibili con le multi-query implicite che non
prevedono transazioni; per farlo sarebbe necessario installare le librerie omp per il threading
implicito

¢ Come potremo orientarci all'interno dei vari path di file json quando le query saranno davvero tante ?
Come faremo a capire se una query ¢ gia presente ? come faremo a indiviuare dove si torva una mainkey
0 una subkey ? Come potremo testarle o inserirne di nuove ?
o E' necessario costruire un agente che si occupa di:
1. tracciare tutte le key presenti nel sistema fornendo:
1. commento, sql, path
2. ricercare una key, subkey
ricercare in modo intelligente un commento, una sql
4. inserire / modificare / testare nuove key o nuove mainkey

w

https://mynext.it

	Accesso a DB tramite prepared statement
	Generalità
	Key

	JSON
	Parametri e Query

	AgentData e funzionalità
	Esecuzione dei prepared statement
	Esecuzione multi-query implicita
	Esecuzione multi-query esplicita
	Esempio

	Applicazione Funzioni Avanzate
	Transazioni
	Pre-Processing dei parametri
	Merge dei risultati

	Altre funzioni di AgentData
	Lista parametri
	Reload del repository
	Costruzione automatica file JSon Insert / Update
	Insert
	Update
	Delete
	Tutte le operazioni
	Esempio Insert (stesso per update)

	Utilizzo di più database
	Esempio Json per più database

	Parameters Augmentation
	Events
	Riga dummy
	Generazione di csv da Prepared Statement
	Attributi utili di una subkey
	Rinominare nomi di campi
	Normalizzare query lunghe

	Q&A

